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Abstract 

In this paper, we present a numerically stable method for determining the exact 
inertia of a non-symmetric large sparse matrices without computing eigenvalues. 
For doing this scheme, at first, we reduce a non-symmetric matrix to a symmetric 
tridiagonal form in a finite number of steps with a new algorithm based on the 
Krylov subspace method. Then, we compute the exact inertia by using an 
algorithm based on floating point arithmetic. Numerical tests report the 
effectiveness of these methods. 

1. Introduction 

Many important characteristic of physical and engineering systems, 
such as stability and inertia can often be determined only by knowing the 
nature and location of the eigenvalues. It is well known that the stability 
of a physical system modelled by a system of differential equation is 
determined just by knowing, if the eigenvalues of the system matrix have 
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all negative real parts. In many engineering applications, it may not be 
enough to determine if the system is stable, see [2]. A problem more 
general than the stability problem is the inertia problem. The inertia of a 
matrix is the triplet of the numbers of the eigenvalues of A with positive, 
negative, and zero real parts. There are reliable algorithms to compute 
the inertia of a non-symmetric matrix. Some of these algorithms are 
numerically unstable and are primarily of theoretical interest, see [1]. 
Another group of these methods are not practical for large and sparse 
matrices. The following are the usual computational approaches for 
determining the inertia of a non-symmetric matrix A: 

(1) Compute the eigenvalues of A explicitly. 

(2) Compute the characteristic polynomial of A and then apply the 
well-known Routh-Hurwitz criterion. 

(3) Solve the Lyapunov equation 

.CXAXA T −=+  

The second approach is usually discarded as a numerical approach, 
see [2]. The last approach is counterproductive. Thus, the only viable way, 
from a numerical viewpoint, of determining the inertia of a matrix, is to 
compute explicitly its eigenvalues. Carlson and Datta described a 
computational method for determining the inertia of a non-symmetric 
matrix, see [3, 4]. The method is based on the implicit solution of a special 
Lyapunov equation. But, this method is not practical for large and sparse 
matrices, see [2]. 

The paper is organized as follows. In Section 2, we recall some 
fundamental results of the inertia and stability. Then, we describe two 
new methods for determining the inertia of a non-symmetric matrix in 
Sections 3, 4. Moreover, several numerical examples are presented to 
illustrate the efficiency of the proposed methods in Sections 3, 4. Finally, 
the conclusion are given in the last section. 

2. Inertia and Stability 

Theorem 2.1. A homogeneous system of differential equation with 
constant coefficients of the form 
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( ) ( )tAxtx =�   (2.1) 

is asymptotically stable, if and only if all the eigenvalues of A have 
negative real parts. 

Proof. See [2]. 

Definition 2.2. A matrix A is called a stable matrix, if all of the 
eigenvalues of A have negative real parts. 

Knowing that the system (2.1) is asymptotically stable, if and only if 
A is a stable matrix. 

Definition 2.3. The inertia of a matrix order n, denoted by ( ),In A     

is the triplet ( ) ( ) ( )( ),,, AAA δπ ν  where ( ) ( ),, AA νπ  and ( )Aδ  are, 

respectively, the number of eigenvalues of A with positive, negative, and 
zero real parts. 

Note that ( ) ( ) ( ) ,nAAA =δ++π ν  and A is a stable matrix, if and 

only if ( ) ( ).0,,0In nA =  

3. Shifted Lanczos Process 

In this section, we provide a stable numerically method for 
determination of a non-symmetric matrix. Our scheme is first to reduce a 
given matrix A to a symmetric tridiagonal form with a Lanczos process, 
and then compute the exact inertia of a symmetric matrix by a floating 
point algorithm, see [5]. 

Step 1 (Lanczos process). Given vectors 1v  and 1w  such that ,111 =wvT  

this process provide a tridiagonal matrix nT  of the form 
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and produces the basis [ ]nn vvV ,,1 …=  and [ ],,,1 nn wwW …=  

respectively, for the Krylov subspaces ( )1, vAK T
n  and ( ),, 1wAKn  

which satisfies the relations: 

,11
T
nnnnnn ewdTWAW +++=  (3.1) 

,11
T
nnn

T
nnn

T evbTVVA +++=  (3.2) 

.nn
T
n IWV =  

Thus 

.nn
T
n TAWV =  

Step 2 (Determining the exact inertia). 

Theorem 3.1 (The Sylvester law of inertia). Let A be a Hermitian 
matrix and P be a nonsingular matrix. Then ( ) ( ).InIn TPAPA =  

The following algorithm, by using the Sylvester law of inertia, 
describes a floating point process to compute the exact inertia of a 
symmetric tridiagonal matrix, see [5]. In this algorithm, ( ),,,1 naaa "=  

=z ( )11 ,, −nzz "  such that 2
ii bz =  for ( )1,,1 −= ni "  and τ  is a 

proper shift parameter. 

Algorithm 1 (Inertia of a symmetric tridiagonal matrix). 

Function ( ) ( )τν ,,inertia,, za=δπ  

( )τ,,inertia zad ++ =  

( )τ,,inertia zad −− =  

for ni ,,1 …=  

if ( ) ( )−+ = ii dd signsign  then 

if ,0<+
id  then 1+= νν  

else if ,0>+
id  then 1+π=π  
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end if 

end if 

end do 

( )π+−=δ νn  

End. 

Example 3.2. Consider the non-symmetric matrix A as the form: 

( )
.
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We apply shifted Lanczos process to compute the exact inertia of A. 
This algorithm has been tested when the dimension of matrix A 
increases. The results are shown in Table 1. 

Table 1. Implementation of shifted Lanczos method for determining 
( )AIn  with different values of n 

n nn
T
n TAWV −  Shift interval ( )τ  ( )A0In  Situation Time 

8 7.65E − 013 [− 0.5, 0.5] (4, 4, 0) exact 0.0013 

16 1.21E − 010 [− 1.5, 1.5] (6, 10, 0) exact 0.0026 

32 1.09E − 007 [− 9, 9] (14, 18, 0) exact 0.0070 

64 0.3317 [− 25, 25] (30, 34, 0) exact 0.0235 

128 608.34 [66, 67] (63, 65, 0) fail 0.0852 

256 1591 [129.5, 131] (127, 129, 0) fail 0.3774 

512 27351 [60, 220] (255, 257, 0) fail 2.2154 
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In Table 1, the column of error is the precision of transforming the 
matrix A to a tridiagonal matrix. Note that if the error is small, then the 
inertia of A can be computed correctly. But, if the error is not small, this 
does not mean that the inertia of A cannot be computed, in this case by 
choosing a proper shift, the inertia of A will be computed. Shift intervals 
are seen in Table 1. The best case is when the shifted parameter is zero. 
In that case, the amount of computations is less, that is why we have a 
column called ( )A0In  in Table 1 to have more information. Also, the 

results show that by increasing the dimension of the matrix, this method 
does not work very well. 

4. Weighted Shifted Lanczos Method 

According to the results shown in Table 1, we can see that the shifted 
Lanczos method computes the inertia accurately, when the matrix is not 
so large, but does not have an exact results when the dimension is large. 
The reason for the above is that, the non-Hermitian Lanczos method is 
not an orthogonal projection comparing with the other Krylov subspace 
methods. Because in this method, the matrices nV  and nW  are not 

orthogonal, but anyhow, we have ,nn
T
n IVW =  and for this reason, the 

method is an oblique projection method. In this section, we have tried to 
decrease the error by making changes in the Lanczos algorithm to be able 
to develop an effective method for computing the exact inertia of a large 
sparse non-symmetric matrices. Using (3.1) and (3.2), we have 

,11
T
nnnnnn ewdTWAW ++=−   (4.1) 

.11
T
nnn

T
nnn

T evbTVVA ++=−   (4.2) 

The right side of the above relations indicates the error of oblique 
projection in the Lanczos method. We multiply the both sides of (4.1) and 
(4.2) by a small scaler 0>β  with the hope that to prevent the increasing 

error in the Lanczos process. Thus, we obtain 
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( ) ,11
T
nnnnnn ewdTWAW ++β=−β  (4.3) 

 ( ) .11
T
nnn

T
nnn

T evbTVVA ++β=−β  (4.4) 

Now let 

.nn
T
n IWV =β  

Thus, we have 

.nn
T
n TAWV =β  (4.5) 

Therefore, for holding (4.5), we must construct a pair β  orthogonal basis 

nV  and ,nW  respectively, for the two following Krylov subspaces: 

( ) { ( ) },,,,span, 1vAvAvvAK nTTT
n

−= …  

( ) { ( ) }.,,,span, 1wAAwwwAK n
n

−= …  

The following algorithm computes exact inertia of a non-symmetric 
matrix A, use transforming A to a tridiagonal form by the weighted 
shifted Lanczos process. 

Algorithm 2 (Weighted shifted Lanczos process).  

Input a shift parameter τ.  

Choose two vectors 1v  and 1w  such that ( ) ;1, 11 β=wv  

set .0001 === qpb  

For nj ,,2,1 "=  do 

( )jjj pAwa ,β=  

11 −+ −−= jjjjjj wbwaAwr  

11 −+ −−= jjjjj
T

j vdvrvAs  

( )111 , +++ β= jjj srd  
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( ) 1111 , ++++ β= jjjj dsrb  

111 +++ = jjj bsv  

111 +++ = jjj dvw  

End for 

For 1,,2,1 −= ni "  do 

2
ii bz =  

End for 

Set ( )naaa ,,1 "=  and ( )11 ,, −= nzzz "  

( ) ( )τν ,,inertia,, za=δπ  

End. 

Example 4.1. Let A be the same matrix that used in Example 3.2 and 
we increase its dimension orderly. We apply Algorithm 2 to find the exact 
inertia of A. The results for different values of n are shown in Table 2. 

Table 2. Implementation of weighted shifted Lanczos method for 
determining ( )AIn  with different values of n 

n nn
T
n TAWV −  Shift interval ( )τ  ( )A0In  Situation Time 

8 3.84E − 014 [−1.01, 1.01] (4, 4, 0) exact 0.0035 

16 1.51E − 012 [− 4.5, 4.5] (6, 10, 0) exact 0.0050 

32 2.11E − 009 [− 18, 18] (14, 18, 0) exact 0.0077 

64 0.0019 [− 31.5, 31.5] (30, 34, 0) exact 0.0269 

128 14.3 [− 39, 39] (62, 62, 0) exact 0.0927 

256 34.72 [− 50, 50] (126, 130, 0) exact 0.3916 

512 81.116 [− 65, 65] (254, 258, 0) exact 2.3921 

According to the Table 2, we can see that by decreasing the error of 
oblique projection, ( )AIn  can be computed accurately without consuming 
more time. 
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Example 4.2. According to the results in Tables 1 and 2, we see that 
the weighted shifted Lanczos in comparison with shifted Lanczos method 
works better. Now, consider A is the same matrix that used in Example 
3.2. We apply our two computational methods to compute the exact 
inertia of A, when the dimension of the matrix is large. Results are shown 
in Table 3. 

Table 3 shows that the weighted shifted Lanczos method works very 
well for large sparse matrices and in any case, the exact inertia can be 
computed. 

Table 3. Implementation of shifted Lanczos and weighted shifted 
Lanczos methods for large values of n 

Shifted Lanczos method Weighted shifted Lanczos method 
n 

( )A0In  Situation Time ( )A0In  Situation Time 

800 (397, 403, 0) fail 7.65 (398, 402, 0) exact 8.35 

1024 (513, 511, 0) fail 15.82 (510, 514, 0) exact 17.028 

1200 (597, 603, 0) fail 22.735 (598, 602, 0) exact 24.838 

1400 (699, 701, 0) fail 35.813 (698, 702, 0) exact 37.77 

1600 (801, 799, 0) fail 55.296 (798, 802, 0) exact 57.74 

1800 (900, 900, 0) fail 73.639 (898, 902, 0) exact 78.761 

2048 (1023, 1025, 0) fail 114.49 (1022, 1026,0) exact 123.92 

5. Comments and Conclusion 

(1) Two new iterative methods presented in this paper can compute 
( )AIn  in the case that A is a non-symmetric large sparse matrix.  

(2) However, the shifted Lanczos method may not be able to compute 
the exact inertia of a non-symmetric large sparse matrices, but the 
results show that they do not have a big difference with the exact 
solutions. Therefore, this method can be used for the application of many 
engineering problems like, vibration problems, which needs to be aware 
of the behaviour of the eigenvalues. 
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